Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hualing Zhu, ${ }^{\text {a }}$ Xin Zhang, ${ }^{{ }^{\mathrm{b}} \text { * }}$ Yujing Song, ${ }^{\text {b }}$ Haizhen $\mathrm{Xu}^{\text {b }}$ and Mei Dong ${ }^{\text {b }}$

${ }^{\text {a }}$ Tianjin Agricultural College, Tianjin, Jinjing Road No 22, Tianjin, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Life Science, Tianjin Normal University, Tianjin, Weijin Road No 241, Tianjin, People's Republic of China

Correspondence e-mail: zxin_tj@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.042$
$w R$ factor $=0.110$
Data-to-parameter ratio $=7.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-\{[1-(Methoxycarbonyl)ethylamino](phenyl)-methylidene\}-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

The title compound, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$, is a neutral potentially tridentate ligand in an enamine-keto form, stabilized by an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. There are two molecules in the asymmetric unit.

Comment

In recent years, Schiff bases and their metal complexes have been studied widely for their antibacterial activity (Li et al., 1997, 2004). 1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (PMBP) is widely used and well known for its extractive ability. Both PMBP and its metal complexes also have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). Since amino acid esters also possess good antibacterial and biological activities (Xiong et al., 1993), we have studied the reactions of PMBP and amino acid esters.

(I)

A view of the molecular structure of the title compound is shown in Fig. 1. There are two molecules in the asymmetric unit, and the numerical results given here are for one of them; they are not significantly different. Atoms O1, C10, C9, C11 and N3 are coplanar. The dihedral angle between this mean plane and that of the pyrazoline ring is $3.87(17)^{\circ}$, close to the value of $3.56(3)^{\circ}$ in 4-\{[3,4-dihydro-5-methyl-3-oxo-2-phenyl2 H -pyrazol-4-ylidene](phenyl)methylamino\}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Wang et al., 2003). The bond lengths within this part of the molecule (Table 1) lie between classical single- and double-bond lengths, indicating extensive conjugation. The phenyl group bonded to N1 and the pyrazolone ring are approximately coplanar, the dihedral angle between them being $4.73(17)^{\circ}$; the phenyl group bonded to C 11 is perpendicular to the pyrazolone ring, with a dihedral angle of $89.34(16)^{\circ}$, reducing steric hindrance.

Atoms N3, C18, C20 and O2 of the alanine methyl ester group are not coplanar, the torsion angle being $-28.6(4)^{\circ}$, as seen in ethyl 2-\{[(1Z)-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-pyrazol-4-ylidene)(phenyl)-methyl]amino\}-3-phenylpropan-

Received 6 June 2005 Accepted 27 June 2005 Online 6 July 2005
oate (Zhang et al., 2005), but different from the situation in some other 4-acylpyrazolone Schiff bases (Zhang et al., 2004; Wang et al., 2003).

A strong intramolecular hydrogen bond is observed (Table 2), stabilizing the enamine-keto form. This is similar to the situation in 4-\{[3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene](phenyl)methylamino\}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one [$\mathrm{N} \cdots \mathrm{O}=2.745$ (4) \AA and N $\mathrm{H} \cdots \mathrm{O}=146(4)^{\circ}$; Wang et al., 2003]. In the title compound, atoms O 1 and N 3 are posible coordinating atoms. Atom O2 is a third possible coordinating atom if there is suitable rotation about the $\mathrm{N} 3-\mathrm{C} 18$ and $\mathrm{C} 18-\mathrm{C} 20$ bonds.

Experimental

The title compound was synthesized by refluxing a mixture of PMBP (15 mmol) and alanine methyl ester (15 mmol) in ethanol (100 ml) over a steam bath for about 4 h . Excess solvent was removed by evaporation and the solution was cooled to room temperature. After four days pale yellow blocks were obtained and dried in air. The product was recrystallized from ethanol, affording pale yellow crystals suitable for X-ray analysis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \\
& M_{r}=363.41 \\
& \text { Monoclinic, } P 2_{1} \AA \AA \\
& a=8.8118(18) \AA \\
& b=12.430(3) \AA \\
& c=18.031(4) \AA \\
& \beta=97.749(2)^{\circ} \\
& V=1956.9(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker APEX2 CCD area detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.934, T_{\text {max }}=0.987$
10774 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.110$
$S=1.06$
3620 reflections
494 parameters
H -atom parameters constrained
$D_{x}=1.234 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1621 reflections
$\theta=2.3-17.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293.2$ (2) K
Block, pale yellow
$0.38 \times 0.32 \times 0.20 \mathrm{~mm}$

3620 independent reflections
2191 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-21 \rightarrow 17$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0458 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.13 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.015 (2)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C10	$1.245(5)$	C $9-\mathrm{C} 11$	$1.376(6)$
O2-C20	$1.206(5)$	C $9-\mathrm{C} 10$	$1.441(6)$
N3-C11	$1.321(5)$	C18-C20	$1.490(6)$
N3-C18	$1.444(5)$	C18-C19	$1.518(6)$
C7-C9	$1.440(6)$		
C11-C9-C10-O1	$4.1(8)$	N3-C18-C20-O2	$-28.6(7)$

Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 \cdots O1	0.86	2.00	$2.713(5)$	139
N6-H6 \cdots O	0.86	2.01	$2.715(4)$	138

H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$ $\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl groups]. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.
he authors thank the Science Development Committee of Tianjin Advanced University for partial funding (research grant No.01-20601)

References

Bruker (2001). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, J.-Z., Jiang, L. \& An, Y.-M. (2004). Chin. J. Appl. Chem. 21, 150-153.
Li, J.-Z., Yu, W.-J. \& Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98-100.
Liu, J.-M., Yang, R.-D. \& Ma, T.-R. (1980). Chem. J. Chin. Univ. 1, 23-30.
Sheldrick, G. M.(1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, J.-L., Yang, Y., Zhang, X. \& Miao, F.-M. (2003). Acta Cryst. E59, o4300432.

Xiong, G.-H., Yang, Z.-M. \& Guo, A.-L (1993). Fine Chemicals, 6, 1-3.
Zhang, X., Zhu, H.-L., Xu, H,-Z. \& Dong, M. (2004). Acta Cryst. E60, o1157o1158.
Zhang, X., Zhu, H.-L., Xu, H,-Z. \& Dong, M. (2005). Acta Cryst. E61, o1629o1630.
Zhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. \& Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37-41.

